Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38640794

RESUMO

Chromatography is a robust and reliable separation method that can use various stationary phases to separate complex mixtures commonly seen in metabolomics. This review examines the types of chromatography and stationary phases that have been used in targeted or untargeted metabolomics with methods such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. General considerations for sample pretreatment and separations in metabolomics are considered, along with the various supports and separation formats for chromatography that have been used in such work. The types of liquid chromatography (LC) that have been most extensively used in metabolomics will be examined, such as reversed-phase liquid chromatography and hydrophilic liquid interaction chromatography. In addition, other forms of LC that have been used in more limited applications for metabolomics (e.g., ion-exchange, size-exclusion, and affinity methods) will be discussed to illustrate how these techniques may be utilized for new and future research in this field. Multidimensional LC methods are also discussed, as well as the use of gas chromatography and supercritical fluid chromatography in metabolomics. In addition, the roles of chromatography in NMR- vs. MS-based metabolomics are considered. Applications are given within the field of metabolomics for each type of chromatography, along with potential advantages or limitations of these separation methods.

2.
Curr Protoc ; 3(8): e867, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37610261

RESUMO

Immunoaffinity chromatography (IAC) is a type of liquid chromatography that uses immobilized antibodies or related binding agents as selective stationary phases for sample separation or analysis. The strong binding and high selectivity of antibodies have made IAC a popular tool for the purification and analysis of many chemicals and biochemicals, including proteins. The basic principles of IAC are described as related to the use of this method for protein purification and analysis. The main factors to consider in this technique are also presented under a discussion of the general strategy to follow during the development of a new IAC method. Protocols, as illustrated using human serum albumin (HSA) as a model protein, are provided for the use of IAC in several formats. This includes both the use of IAC with traditional low-performance supports such as agarose for off-line immunoextraction and supports used in high-performance IAC for on-line immunoextraction. The use of IAC for protein analysis as a flow-based or chromatographic immunoassay is also discussed and described using HSA and a competitive binding assay format as an example. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Off-line immunoextraction by traditional immunoaffinity chromatography Basic Protocol 2: On-line immunoextraction by high-performance immunoaffinity chromatography Basic Protocol 3: Competitive binding chromatographic immunoassay.


Assuntos
Anticorpos Imobilizados , Anticorpos , Humanos , Cromatografia de Afinidade , Técnicas Imunológicas , Cromatografia Líquida , Albumina Sérica Humana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...